Ch 8 Covalent Bonding

Before You Read

ionic bond	[
octet rule	
Chapter 4	Describe the structure of an atom.
Chapter 6	Explain the following concepts: periodic trends and periodic
	properties of elements.
Chapter 8	Identify the ions, along with their charges, in the following ionic compounds.
Chapter 8	Identify the ions, along with their charges, in the following ionic compounds. Li ₂ S
Chapter 8	Identify the ions, along with their charges, in the following ionic compounds. Li ₂ S KMnO ₄
Chapter 8	Identify the ions, along with their charges, in the following ionic compounds. Li ₂ S KMnO ₄ Al ₂ O ₂

Covalent Bonding Section 8.1 The Covalent Bond

Main Idea	Details
	Skim Section 1 of your text. Write three questions that come to mind from reading the headings and the illustration captions.
	1
	2
	3
New Vocabulary	Use your text to define each term.
covalent bond	
molecule	
Lewis structure	
sigma bond	
pi bond	
endothermic reaction	
exothermic reaction	
Academic- Vocabular	Define the following term.
overlap	

Section 8.1 The Covalent Bond (continued)

Why do stome	Funlain the actet rule by completing the following sentences
bond?	The rule states that
Use with page 240.	
	Although exceptions exist the rule provides a useful frame.
	work for understanding
What is a covalent bond?	Complete the following sentences using words or phrases from your text.
Use with page 241.	The force between two atoms is the result of
	repulsion, nucleus-nucleus, and nucleus-electron
	At the point of, the
	forces balance the forces. The most stable arrangement
	of atoms exists at the point of, when the
	atoms bond covalently and a forms.
Bonds Lewis Structure of a Molecule	You Try It Problem
Use with Example	1 Analyze the Broblem
Froolem 6.1, page 244.	Write the electron-dot structures of each of the two component atoms.
	Known: H., Cl:
	Unknown: of HCI
	Hydrogen, H, has only one valence electron. Chlorine, Cl, has
	octet.
	 Solve for the Unknown Draw the electron-dot structure for each of the component atoms Then show the sharing of the pairs of electrons.

Na	ame
----	-----

_____ Date _____

Section 8.1 The Covalent Bond (continued)

Main Idea	(Details)
	3. Evaluate the Answer Each atom in the molecule has achieved a configuration and thus is
Multiple Covalent Bonds Use with pages 245–246.	Identify each bond between the component atoms as sigma bonds (single bonds), one sigma bond and one pi bond (double bonds), or one sigma bond and two pi bonds (triple bonds). $H-C=C-H$
	H-C=O H
The Strength of Covalent Bonds <i>Use with pages 246–247.</i>	Explain the factors that control the strength of covalent bonds.
	Define bond dissociation energy.
REAL-WORLD bonding and the chemi	CONNECTION Explain how understanding covalent istry of compounds might help scientists increase food supplies.

Main Idea —	Details
	Scan Section 2 of your text. Use the checklist below as a guide.
	Read all section titles.
	Read all boldfaced words.
	Read all tables and graphs.
	Read all formulas.
	Look at all figures and read the captions.
	 Think about what you already know about the naming of molecules.
	Write three facts you discovered about the names and formulas of covalent molecules.
	1.
	2
	3
New- Vocabu	Use your text to define the following term.
onya	

Name_____ Date _____

Section 8.2 Naming Molecules (continued)

Main Idea	Details
Naming Binary	Identify the prefixes for these three binary molecular compounds.
Molecular	Ge ₃ N ₂ germaniumnitride
Compounds	C ₂ Cl ₄ carbonchloride
Use with Example Problem 8.2, page 249.	B ₆ Siboron silicide
	Solve Read Example Problem 8.2 in your text.
	You Try It
	• Problem
	Name the compound N_2O_3 .
	1. Analyze the Problem Known:
	Unknown:
	The formula reveals the elements present and the number of atoms for each element. Only two elements are present, and both are nonmetals, so the compound can be named according to the rules for binary molecular compounds.
	2. Solve for the Unknown
	The first element present in the compound is, The
	second element is The root of this name is,
	so the second part of the name is From the formula, two
	i atoms and three atoms make up a molecule
	The complete name for the compound is
	3. Evaluate the Answer
	The name shows that a molecule of the
	compound contains atoms and
	atoms, which agrees with the chemical formula for the
	compound, N_2O_3 .
	•

Section 8.2 Naming Molecules (continued)

Covalent Bonding Section 8.3 Molecular Structures

(Main Idea)	(Details)
	Skim Section 3 of your text. Write three questions that come to mind from reading the headings, illustration captions, and topics for the example problems. 1.
	2 3
New- Vocabulary	Use your text to define each term.
structural formula	
resonance	
resonunce	
coordinate covalent bond	

Section 8.3 Molecular Structures (continued)

Main Idea	(Details)
Structural Formulas <i>Use with pages 253–254.</i>	List the steps that should be used to determine Lewis structures. 1. 2. 3.
Lewis Structure for a Covalent Compound with Multiple Bonds Use with Example Problem 8.4, page 256.	4 Solve Read Example Problem 8.4 in your text. You Try It Problem Draw the Lewis structure for FCHO. 1. Analyze the Problem Known: the compound formula: Unknown:
	Carbon has less attraction for shared electrons, so it is the central atom. 2. Solve for the Unknown Find the total number of valence electrons and the number of bonding pairs. valence electrons/C atom + valence electrons/F atom + 1 valence electron/H atom + valence electrons/O atom = valence electrons available valence electrons/(2 electrons/pair) = available pairs

Section 8.3 Molecular Structures (continued)

Main Idea	Details
	Draw single bonds, which represent each, from
	the carbon atom to each terminal atom, and place electron pairs
	around the and atoms to give them stable
	н—с—ої: ! :F:
	available pairs – pairs used = 0
	Carbon does not have an octet, so one of the lone pairs on the atom must be used to form a bond.
	3. Evaluate the Answer
	Both carbon and now have an octet, which satisfies the octet rule.
Lewis Structure for a Polyatomic	Solve Read Example Problem 8.5 in your text.
lon	You Try It
Use with Example Problem 8.5, page 257.	• Problem • Draw the Lewis structure for the permanganate ion (MnO_4^{-}) .
	1. Analyze the Problem
	Known: the compound formula:
	Unknown:
	Manganese has less attraction for shared electrons, so it is the central atom.
	2. Solve for the Unknown Find the total number of valence electrons and the number of bonding pairs.
	1 Mn atom \times (valence electrons/Mn atom) + 0 atoms
	\times (6 valence electrons/0 atom + electron(s) from the
	negative charge = valence electrons

Section 8.3 Molecular Structures (continued)

(Main Idea)	(Details)
	available valence electrons/(2 electrons/pair) = available pairs + 1 electron Draw single bonds, which represent an, from the Mn atom to each 0 atom, and place electron pairs around the 0 atoms to give them stable
	available pairs $-$ pairs used $= 0$ No electron pairs remain available for the Mn atom, so the Lewis structure for the permanganate ion is:
	3. Evaluate the Answer All atoms now have an octet, and the group of atoms has a net charge of
Resonance Structures Use with page 258.	Explain resonance structures by completing the following sentences. Each actual molecule or ion that undergoes behaves as if it has only structure. Experimentally measured bond lengths
Exceptions to the Octet Rule Use with pages 258–259.	 List three reasons for exceptions to the octet rule. 1
1 0	2
	3

Covalent Bonding Section 8.4 Molecular Shapes

	Scan Section 4 of your text. Use the checklist below as a guide.
	Read all section titles.
	Read all boldfaced words.
	Read all tables.
	Look at all pictures and read the captions.
	• Think about what you already know about the shapes and arrangements of atoms in covalent compounds.
	Write three facts you discovered about the shapes covalent compounds take.
	1
	2
	3
	3
New- Vocabular	3 y Use your text to define each term.
New Vocabular VSEPR model	3 y Use your text to define each term.
New Vocabular VSEPR model	3y Use your text to define each term.
New Vocabular VSEPR model	3y Use your text to define each term.
New Vocabular VSEPR model	3y Use your text to define each term.
New Vocabular VSEPR model	3y Use your text to define each term.
New Vocabular VSEPR model	3y Use your text to define each term.
New Vocabular VSEPR model	3y Use your text to define each term.
New Vocabular VSEPR model	3
New Vocabular VSEPR model	3
New Vocabular VSEPR model	3. y Use your text to define each term.
New Vocabular VSEPR model	3. y Use your text to define each term.
New Vocabular VSEPR model	3. y Use your text to define each term.

Section 8.4 Molecular Shapes (continued)

(Main Idea)-

(Details⁻

VSEPR Model

Use with pages 261–263.

Match the molecular shapes listed below with their corresponding bond angles.

trigonal planar	180°
trigonal pyramidal	120°
bent	109.5°
linear	107.3°
octahedral	104.5°
tetrahedral	90° (out of plane); 120° (in plane)
trigonal bipyramidal	90°

Hybridization

Use with pages 262–263.

Label the hybrid orbitals in the figures below as sp, sp^2 , $sp^3 sp^3 d$, or $sp^3 d_2$.

_____ Date _____

Section 8.4 Molecular Shapes (continued)

hape of S	olve Read Example Problem 8.7 in your text.
olecule	ou Try It
Example	Problem
	What is the shape of a Sbl $_5$ molecule? Determine the bond angles, and identify the type of hybrid orbitals that form the molecule's bonds.
	1. Analyze the Problem
	Known: the compound formula:
	Unknown:
	The molecule contains one central antimony atom bonded to iodine atoms.
	2. Solve for the Unknown
	Find the number of valence electrons and the number of electron
	pairs.
	1 Sb atom \times (valence electrons/Sb atom) + I atoms \times
	(valence electrons/I atom) =valence electrons
	Three electron pairs exist on each iodine atom. This leaves
	available valence electrons for bonding.
	electrons/(2 electrons/pair) = available pairs
	Draw the molecule's Lewis structure. From this Lewis structure, determine the molecular shape.
	Lewis structure Molecular shape
	The molecule's shape is, with a bond
	angle of in the horizontal plane, and a bond angle of
	between the vertical and horizontal bonds. The bonds are made
	up of hybrid orbitals.
	3. Evaluate the Answer
	Each iodine atom has an octet. The antimony atom has

Covalent Bonding Section 8.5 Electronegativity and Polarity

Scan Section 5 • Read all section • Read all bold • Read all table • Look at all pic • Think about v distribution of Write three fact 1. 2. 3. New Vocabulary Use your text polar covalent bond	<i>of your text. Use the checklist below as a guide.</i> on titles. faced words.
 Read all section Read all boldi Read all table Look at all pion Think about we distribution of Write three face 1 2 3 Wew Vocabulary Use your text polar covalent bond 	on titles. aced words. s and charts
 Read all boldi Read all table Look at all pid Think about v distribution of Write three fact 1 2 3 Use your text polar covalent bond 	àced words. s and charts
 Read all table Look at all pid Think about v distribution or Write three fact 1 2 3 New Vocabulary Use your text polar covalent bond 	s and charts
 Look at all pide Think about we distribution of Write three face 1 2 3 Wew Vocabulary Use your text polar covalent bond 	
Think about v distribution of Write three fac 1 2 3 Dise your text polar covalent bond	ctures and read the captions.
Write three fac 1. 2. 3. Vocabulary Use your text polar covalent bond	what you already know about the strengths and charge in covalent bonds.
1. 2. 3. yocabulary Use your text polar covalent bond	ts you discovered about electrognegativity.
New 3. your text polar covalent bond	
New Vocabulary Use your text polar covalent bond	
polar covalent bond	to define the following term.
•	

Name	
------	--

Section 8.5 Electronegativity and Polarity (continued)

Main Idea	(Details	\supset ———	
Electron Affinity, Electronegativity,	Sequence the the most electric	e following elements fr onegative. Use Figure	om the least electronegative to 8.20 for reference.
and Bond	Au		
Character	Y		
030 with puges 200-200.	Ba		
	P		
	H		
	Те		
	0		
	I		
	Co		
Polar Covalent Bonds <i>Use with pages 267–268.</i>	Draw the Lew ed below. Ana whether or not	is structure for each of lyze the symmetry of a the compound is pola	f the molecular compounds list- the structure to determine r covalent or nonpolar covalent.
	112		
	CO_2		
	CH ₃ Cl		

_____ Date _____

Section 8.5 Electronegativity and Polarity (continued)

Main Idea	(Details)
Properties of Covalent Compounds	Determine whether each of the properties listed below is charac- teristic of ionic compounds, covalent compounds, nonpolar covalent compounds, or polar covalent compounds.
Use with pages 269–270.	low melting point
	very soft solid
	high boiling point
	weak interaction between formula units
	solubility in oil
	very hard solid
	high melting point
	solubility in water
	easily vaporized
	strong interaction between formula units

Covalent Network Solids

Use with page 270.

Describe what the network solid for quartz (SiO_2) molecules is like, and how it has a tetrahedral structure similar to diamond structure.

Covalent Bonding Chapter Wrap-Up

	After reading this chapter, list three key facts about covalent bonding.
	1
	2
	3
Review	 Use this checklist to help you study. Use this Science Notebook to study this chapter. Study the vocabulary words and scientific definitions. Review daily homework assignments. Reread the chapter and review the tables, graphs, and illustrations.
	Review the Section Assessment questions at the end of each section.
	Look over the Study Guide at the end of the chapter.
R EAL-WORLD	CONNECTION
account for the vast number of carbon compounds, including those responsible for living organisms.	